We study the challenging problem of learning decision lists attribute-efficiently, giving both positive and negative results.
Our main positive result is a new tradeoff between the running time and mistake bound for learning length-$k$ decision lists over $n$ Boolean variables. When the allowed running time is relatively high, our new ... more >>>
We study the complexity of computing Boolean functions on general
Boolean domains by polynomial threshold functions (PTFs). A typical
example of a general Boolean domain is $\{1,2\}^n$. We are mainly
interested in the length (the number of monomials) of PTFs, with
their degree and weight being of secondary interest. We ...
more >>>
Let $g: \{-1,1\}^k \to \{-1,1\}$ be any Boolean function and $q_1,\dots,q_k$ be any degree-2 polynomials over $\{-1,1\}^n.$ We give a \emph{deterministic} algorithm which, given as input explicit descriptions of $g,q_1,\dots,q_k$ and an accuracy parameter $\eps>0$, approximates \[
\Pr_{x \sim \{-1,1\}^n}[g(\sign(q_1(x)),\dots,\sign(q_k(x)))=1] \]
to within an additive $\pm \eps$. For any constant ...
more >>>
We give a {\em deterministic} algorithm for approximately computing the fraction of Boolean assignments that satisfy a degree-$2$ polynomial threshold function. Given a degree-2 input polynomial $p(x_1,\dots,x_n)$ and a parameter $\eps > 0$, the algorithm approximates
\[
\Pr_{x \sim \{-1,1\}^n}[p(x) \geq 0]
\]
to within an additive $\pm \eps$ in ...
more >>>
We give a deterministic algorithm for
approximately counting satisfying assignments of a degree-$d$ polynomial threshold function
(PTF).
Given a degree-$d$ input polynomial $p(x_1,\dots,x_n)$ over $\mathbb{R}^n$
and a parameter $\epsilon > 0$, our algorithm approximates
$
\mathbf{P}_{x \sim \{-1,1\}^n}[p(x) \geq 0]
$
to within an additive $\pm \epsilon$ in time $O_{d,\epsilon}(1)\cdot ...
more >>>
The threshold degree of a Boolean function $f$ is the minimum degree of
a real polynomial $p$ that represents $f$ in sign: $f(x)\equiv\mathrm{sgn}\; p(x)$. In a seminal 1969
monograph, Minsky and Papert constructed a polynomial-size constant-depth
$\{\wedge,\vee\}$-circuit in $n$ variables with threshold degree $\Omega(n^{1/3}).$ This bound underlies ...
more >>>
The threshold degree of a Boolean function $f$ is the minimum degree of
a real polynomial $p$ that represents $f$ in sign: $f(x)\equiv\mathrm{sgn}\; p(x)$. Introduced
in the seminal work of Minsky and Papert (1969), this notion is central to
some of the strongest algorithmic and complexity-theoretic results for
more >>>
A polynomial threshold function (PTF) of degree $d$ is a boolean function of the form $f=\mathrm{sgn}(p)$, where $p$ is a degree-$d$ polynomial, and $\mathrm{sgn}$ is the sign function. The main result of the paper is an almost optimal bound on the probability that a random restriction of a PTF is ... more >>>
We prove the hardness of weakly learning halfspaces in the presence of adversarial noise using polynomial threshold functions (PTFs). In particular, we prove that for any constants $d \in \mathbb{Z}^+$ and $\epsilon > 0$, it is NP-hard to decide: given a set of $\{-1,1\}$-labeled points in $\mathbb{R}^n$ whether (YES Case) ... more >>>
A polynomial threshold function (PTF) is defined as the sign of a polynomial $p\colon\bool^n\to\mathbb{R}$. A PTF circuit is a Boolean circuit whose gates are PTFs. We study the problems of exact and (promise) approximate counting for PTF circuits of constant depth.
Satisfiability (#SAT). We give the first zero-error randomized algorithm ... more >>>
The degree-$d$ Chow parameters of a Boolean function $f: \bn \to \R$ are its degree at most $d$ Fourier coefficients.
It is well-known that degree-$d$ Chow parameters uniquely characterize degree-$d$ polynomial threshold functions
(PTFs)
within the space of all bounded functions. In this paper, we prove a robust ...
more >>>