Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > JUNTA THEOREMS:
Reports tagged with Junta theorems:
TR12-060 | 16th May 2012
Parikshit Gopalan, Raghu Meka, Omer Reingold

DNF Sparsification and a Faster Deterministic Counting

Revisions: 2

Given a DNF formula $f$ on $n$ variables, the two natural size measures are the number of terms or size $s(f)$, and the maximum width of a term $w(f)$. It is folklore that short DNF formulas can be made narrow. We prove a converse, showing that narrow formulas can be ... more >>>


TR17-180 | 26th November 2017
Irit Dinur, Yuval Filmus, Prahladh Harsha

Low degree almost Boolean functions are sparse juntas

Revisions: 3

Nisan and Szegedy showed that low degree Boolean functions are juntas. Kindler and Safra showed that low degree functions which are *almost* Boolean are close to juntas. Their result holds with respect to $\mu_p$ for every *constant* $p$. When $p$ is allowed to be very small, new phenomena emerge. ... more >>>


TR20-009 | 6th February 2020
Esty Kelman, Subhash Khot, Guy Kindler, Dor Minzer, Muli Safra

Theorems of KKL, Friedgut, and Talagrand via Random Restrictions and Log-Sobolev Inequality

We give alternate proofs for three related results in analysis of Boolean functions, namely the KKL
Theorem, Friedgut’s Junta Theorem, and Talagrand’s strengthening of the KKL Theorem. We follow a
new approach: looking at the first Fourier level of the function after a suitable random restriction and
applying the Log-Sobolev ... more >>>




ISSN 1433-8092 | Imprint