Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > BLACK-BOX SEPARATION:
Reports tagged with Black-Box Separation:
TR12-065 | 16th May 2012
Mohammad Mahmoody, Hemanta Maji, Manoj Prabhakaran

Limits of Random Oracles in Secure Computation

Revisions: 2

The seminal result of Impagliazzo and Rudich (STOC 1989) gave a black-box separation between one-way functions and public-key encryption: informally, a public-key encryption scheme cannot be constructed using one-way functions as the sole source of computational hardness. In addition, this implied a black-box separation between one-way functions and protocols for ... more >>>


TR12-167 | 16th November 2012
Periklis Papakonstantinou, Charles Rackoff, Yevgeniy Vahlis

How powerful are the DDH hard groups?

The question whether Identity-Based Encryption (IBE) can be based on the Decisional Diffie-Hellman (DDH) assumption is one of the most prominent questions in Cryptography related to DDH. We study limitations on the use of the DDH assumption in cryptographic constructions, and show that it is impossible to construct a secure ... more >>>


TR13-137 | 29th September 2013
Mohammad Mahmoody, Hemanta Maji, Manoj Prabhakaran

On the Power of Public-key Encryption in Secure Computation

We qualitatively separate semi-honest secure computation of non-trivial secure-function evaluation (SFE) functionalities from existence of key-agreement protocols.
Technically, we show the existence of an oracle (namely, PKE-oracle) relative to which key-agreement protocols exist; but it is useless for semi-honest secure realization of symmetric 2-party (deterministic finite) SFE functionalities, i.e. any ... more >>>


TR22-010 | 18th January 2022
Marshall Ball, Dana Dachman-Soled, Julian Loss

(Nondeterministic) Hardness vs. Non-Malleability

We present the first truly explicit constructions of \emph{non-malleable codes} against tampering by bounded polynomial size circuits. These objects imply unproven circuit lower bounds and our construction is secure provided E requires exponential size nondeterministic circuits, an assumption from the derandomization literature.

Prior works on NMC ... more >>>




ISSN 1433-8092 | Imprint