In several settings derandomization is known to follow from circuit lower bounds that themselves are equivalent to the existence of pseudorandom generators. This leaves open the question whether derandomization implies the circuit lower bounds that are known to imply it, i.e., whether the ability to derandomize in *any* way implies ... more >>>
Korten and Pitassi (FOCS, 2024) defined a new complexity class $L_2P$ as the polynomial-time Turing closure of the Linear Ordering Principle. They put it between $MA$ (Merlin--Arthur protocols) and $S_2P$ (the second symmetric level of the polynomial hierarchy).
In this paper we sandwich $L_2P$ between $P^{prMA}$ and $P^{prSBP}$. (The oracles ... more >>>