In this work we explore error-correcting codes derived from
the ``lifting'' of ``affine-invariant'' codes.
Affine-invariant codes are simply linear codes whose coordinates
are a vector space over a field and which are invariant under
affine-transformations of the coordinate space. Lifting takes codes
defined over a vector space of small dimension ...
more >>>
In this work we explore error-correcting codes derived from
the ``lifting'' of ``affine-invariant'' codes.
Affine-invariant codes are simply linear codes whose coordinates
are a vector space over a field and which are invariant under
affine-transformations of the coordinate space. Lifting takes codes
defined over a vector space of small dimension ...
more >>>
In this work we present a strong analysis of the testability of a broad, and to date the most interesting known, class of "affine-invariant'' codes. Affine-invariant codes are codes whose coordinates are associated with a vector space and are invariant under affine transformations of the coordinate space. Affine-invariant linear codes ... more >>>
We present a general framework for constructing high rate error correcting codes that are locally correctable (and hence locally decodable if linear) with a sublinear number of queries, based on lifting codes with respect to functions on the coordinates. Our approach generalizes the lifting of affine-invariant codes of Guo, Kopparty, ... more >>>
Adaptivity is known to play a crucial role in property testing. In particular, there exist properties for which there is an exponential gap between the power of \emph{adaptive} testing algorithms, wherein each query may be determined by the answers received to prior queries, and their \emph{non-adaptive} counterparts, in which all ... more >>>
Lifting theorems are theorems that relate the query complexity of a function $f:\left\{ 0,1 \right\}^n\to \left\{ 0,1 \right\}$ to the communication complexity of the composed function $f\circ g^n$, for some “gadget” $g:\left\{ 0,1 \right\}^b\times \left\{ 0,1 \right\}^b\to \left\{ 0,1 \right\}$. Such theorems allow transferring lower bounds from query complexity to ... more >>>
One of the major open problems in complexity theory is proving super-logarithmic lower bounds on the depth of circuits (i.e., $\mathbf{P}\not\subseteq\mathbf{NC}^1$). Karchmer, Raz, and Wigderson (Computational Complexity 5(3/4), 1995) suggested to approach this problem by proving that depth complexity behaves “as expected” with respect to the composition of functions $f ... more >>>
Let $f: \{0,1\}^n \to \{0, 1\}$ be a boolean function, and let $f_\land (x, y) = f(x \land y)$ denote the AND-function of $f$, where $x \land y$ denotes bit-wise AND. We study the deterministic communication complexity of $f_\land$ and show that, up to a $\log n$ factor, it is ... more >>>