Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with set-multilinear formula:
TR12-113 | 7th September 2012
Manindra Agrawal, Chandan Saha, Nitin Saxena

Quasi-polynomial Hitting-set for Set-depth-$\Delta$ Formulas

We call a depth-$4$ formula $C$ $\textit{ set-depth-4}$ if there exists a (unknown) partition $X_1\sqcup\cdots\sqcup X_d$ of the variable indices $[n]$ that the top product layer respects, i.e. $C(\mathbf{x})=\sum_{i=1}^k {\prod_{j=1}^{d} {f_{i,j}(\mathbf{x}_{X_j})}}$ $ ,$ where $f_{i,j}$ is a $\textit{sparse}$ polynomial in $\mathbb{F}[\mathbf{x}_{X_j}]$. Extending this definition to any depth - we call ... more >>>

TR21-094 | 6th July 2021
Nutan Limaye, Srikanth Srinivasan, S├ębastien Tavenas

New Non-FPT Lower Bounds for Some Arithmetic Formulas

An Algebraic Formula for a polynomial $P\in F[x_1,\ldots,x_N]$ is an algebraic expression for $P(x_1,\ldots,x_N)$ using variables, field constants, additions and multiplications. Such formulas capture an algebraic analog of the Boolean complexity class $\mathrm{NC}^1.$ Proving lower bounds against this model is thus an important problem.

It is known that, to prove ... more >>>

TR22-064 | 2nd May 2022
Deepanshu Kush, Shubhangi Saraf

Improved Low-Depth Set-Multilinear Circuit Lower Bounds

In this paper, we prove strengthened lower bounds for constant-depth set-multilinear formulas. More precisely, we show that over any field, there is an explicit polynomial $f$ in VNP defined over $n^2$ variables, and of degree $n$, such that any product-depth $\Delta$ set-multilinear formula computing $f$ has size at least $n^{\Omega ... more >>>

ISSN 1433-8092 | Imprint