Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > QUANTUM COMPLEXITY THEORY:
Reports tagged with quantum complexity theory:
TR12-130 | 3rd October 2012
Abuzer Yakaryilmaz

Public-qubits versus private-coins

We introduce a new public quantum interactive proof system, namely qAM, by augmenting the verifier with a fixed-size quantum register in Arthur-Merlin game. We focus on space-bounded verifiers, and compare our new public system with private-coin interactive proof (IP) system in the same space bounds. We show that qAM systems ... more >>>


TR19-131 | 11th September 2019
Lieuwe Vinkhuijzen, André Deutz

A Simple Proof of Vyalyi's Theorem and some Generalizations

In quantum computational complexity theory, the class QMA models the set of problems efficiently verifiable by a quantum computer the same way that NP models this for classical computation. Vyalyi proved that if $\text{QMA}=\text{PP}$ then $\text{PH}\subseteq \text{QMA}$. In this note, we give a simple, self-contained proof of the theorem, using ... more >>>


TR20-185 | 1st December 2020
Srinivasan Arunachalam, Alex Grilo, Tom Gur, Igor Oliveira, Aarthi Sundaram

Quantum learning algorithms imply circuit lower bounds

Revisions: 1

We establish the first general connection between the design of quantum algorithms and circuit lower bounds. Specifically, let $\mathrm{C}$ be a class of polynomial-size concepts, and suppose that $\mathrm{C}$ can be PAC-learned with membership queries under the uniform distribution with error $1/2 - \gamma$ by a time $T$ quantum algorithm. ... more >>>


TR21-149 | 5th November 2021
Sevag Gharibian, Dorian Rudolph

On polynomially many queries to NP or QMA oracles

We study the complexity of problems solvable in deterministic polynomial time with access to an NP or Quantum Merlin-Arthur (QMA)-oracle, such as $P^{NP}$ and $P^{QMA}$, respectively.
The former allows one to classify problems more finely than the Polynomial-Time Hierarchy (PH), whereas the latter characterizes physically motivated problems such as Approximate ... more >>>


TR24-156 | 7th October 2024
Bruno Pasqualotto Cavalar, Eli Goldin, Matthew Gray, Peter Hall

A Meta-Complexity Characterization of Quantum Cryptography

We prove the first meta-complexity characterization of a quantum cryptographic primitive. We show that one-way puzzles exist if and only if there is some quantum samplable distribution of binary strings over which it is hard to approximate Kolmogorov complexity. Therefore, we characterize one-way puzzles by the average-case hardness of a ... more >>>




ISSN 1433-8092 | Imprint