We study the rank of complex sparse matrices in which the supports of different columns have small intersections. The rank of these matrices, called design matrices, was the focus of a recent work by Barak et. al. (BDWY11) in which they were used to answer questions regarding point configurations. In ... more >>>
We study questions in incidence geometry where the precise position of points is `blurry' (e.g. due to noise, inaccuracy or error). Thus lines are replaced by narrow tubes, and more generally affine subspaces are replaced by their small neighborhood. We show that the presence of a sufficiently large number of ... more >>>
We present a general framework for constructing high rate error correcting codes that are locally correctable (and hence locally decodable if linear) with a sublinear number of queries, based on lifting codes with respect to functions on the coordinates. Our approach generalizes the lifting of affine-invariant codes of Guo, Kopparty, ... more >>>
Locally-correctable codes (LCCs) and locally-testable codes (LTCs) are codes that admit local algorithms for decoding and testing respectively. The local algorithms are randomized algorithms that make only a small number of queries to their input. LCCs and LTCs are both interesting in their own right, and have important applications in ... more >>>
Affine-invariant codes are codes whose coordinates form a vector space over a finite field and which are invariant under affine transformations of the coordinate space. They form a natural, well-studied class of codes; they include popular codes such as Reed-Muller and Reed-Solomon. A particularly appealing feature of affine-invariant codes is ... more >>>
A locally correctable code (LCC) is an error correcting code that allows correction of any arbitrary coordinate of a corrupted codeword by querying only a few coordinates.
We show that any zero-error $2$-query locally correctable code $\mathcal{C}: \{0,1\}^k \to \Sigma^n$ that can correct a constant fraction of corrupted symbols must ...
more >>>
We give improved lower bounds for binary $3$-query locally correctable codes (3-LCCs) $C \colon \{0,1\}^k \rightarrow \{0,1\}^n$. Specifically, we prove:
(1) If $C$ is a linear design 3-LCC, then $n \geq 2^{(1 - o(1))\sqrt{k} }$. A design 3-LCC has the additional property that the correcting sets for every ...
more >>>
Time efficient decoding algorithms for error correcting codes often require linear space. However, locally decodable codes yield more efficient randomized decoders that run in time $n^{1+o(1)}$ and space $n^{o(1)}$. In this work we focus on deterministic decoding.
Gronemeier showed that any non-adaptive deterministic decoder for a good code running ...
more >>>