Zeev Dvir, Shubhangi Saraf, Avi Wigderson

We study the rank of complex sparse matrices in which the supports of different columns have small intersections. The rank of these matrices, called design matrices, was the focus of a recent work by Barak et. al. (BDWY11) in which they were used to answer questions regarding point configurations. In ... more >>>

Albert Ai, Zeev Dvir, Shubhangi Saraf, Avi Wigderson

We study questions in incidence geometry where the precise position of points is `blurry' (e.g. due to noise, inaccuracy or error). Thus lines are replaced by narrow tubes, and more generally affine subspaces are replaced by their small neighborhood. We show that the presence of a sufficiently large number of ... more >>>

Alan Guo

We present a general framework for constructing high rate error correcting codes that are locally correctable (and hence locally decodable if linear) with a sublinear number of queries, based on lifting codes with respect to functions on the coordinates. Our approach generalizes the lifting of affine-invariant codes of Guo, Kopparty, ... more >>>

Or Meir

Locally-correctable codes (LCCs) and locally-testable codes (LTCs) are codes that admit local algorithms for decoding and testing respectively. The local algorithms are randomized algorithms that make only a small number of queries to their input. LCCs and LTCs are both interesting in their own right, and have important applications in ... more >>>

Arnab Bhattacharyya, Sivakanth Gopi

Affine-invariant codes are codes whose coordinates form a vector space over a finite field and which are invariant under affine transformations of the coordinate space. They form a natural, well-studied class of codes; they include popular codes such as Reed-Muller and Reed-Solomon. A particularly appealing feature of affine-invariant codes is ... more >>>

Arnab Bhattacharyya, Sivakanth Gopi

A locally correctable code (LCC) is an error correcting code that allows correction of any arbitrary coordinate of a corrupted codeword by querying only a few coordinates.

We show that any zero-error $2$-query locally correctable code $\mathcal{C}: \{0,1\}^k \to \Sigma^n$ that can correct a constant fraction of corrupted symbols must ...
more >>>

Pravesh Kothari, Peter Manohar

We give improved lower bounds for binary $3$-query locally correctable codes (3-LCCs) $C \colon \{0,1\}^k \rightarrow \{0,1\}^n$. Specifically, we prove:

(1) If $C$ is a linear design 3-LCC, then $n \geq 2^{(1 - o(1))\sqrt{k} }$. A design 3-LCC has the additional property that the correcting sets for every ...
more >>>

Joshua Cook, Dana Moshkovitz

Time efficient decoding algorithms for error correcting codes often require linear space. However, locally decodable codes yield more efficient randomized decoders that run in time $n^{1+o(1)}$ and space $n^{o(1)}$. In this work we focus on deterministic decoding.

Gronemeier showed that any non-adaptive deterministic decoder for a good code running ...
more >>>