We prove new upper bounds on the size of families of vectors in $\Z_m^n$ with restricted modular inner products, when $m$ is a large integer. More formally, if $\vec{u}_1,\ldots,\vec{u}_t \in \Z_m^n$ and $\vec{v}_1,\ldots,\vec{v}_t \in \Z_m^n$ satisfy $\langle\vec{u}_i,\vec{v}_i\rangle\equiv0\pmod m$ and $\langle\vec{u}_i,\vec{v}_j\rangle\not\equiv0\pmod m$ for all $i\neq j\in[t]$, we prove that $t \leq ... more >>>
A Matching Vector ($\mathbf{MV}$) family modulo a positive integer $m \ge 2$ is a pair of ordered lists $\mathcal{U} = (\mathbf{u}_1, \cdots, \mathbf{u}_K)$ and $\mathcal{V} = (\mathbf{v}_1, \cdots, \mathbf{v}_K)$ where $\mathbf{u}_i, \mathbf{v}_j \in \mathbb{Z}_m^n$ with the following property: for any $i \in [K]$, the inner product $\langle \mathbf{u}_i, \mathbf{v}_i \rangle ... more >>>