Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > STREAMING:
Reports tagged with streaming:
TR13-002 | 31st December 2012
Venkatesan Guruswami, Krzysztof Onak

Superlinear lower bounds for multipass graph processing

Revisions: 3

We prove $n^{1+\Omega(1/p)}/p^{O(1)}$ lower bounds for the space complexity of $p$-pass streaming algorithms solving the following problems on $n$-vertex graphs:

* testing if an undirected graph has a perfect matching (this implies lower bounds for computing a maximum matching or even just the maximum matching size),

* testing if two ... more >>>


TR15-083 | 14th May 2015
Omri Weinstein, David Woodruff

The Simultaneous Communication of Disjointness with Applications to Data Streams

Revisions: 1

We study $k$-party set disjointness in the simultaneous message-passing model, and show that even if each element $i\in[n]$ is guaranteed to either belong to all $k$ parties or to at most $O(1)$ parties in expectation (and to at most $O(\log n)$ parties with high probability), then $\Omega(n \min(\log 1/\delta, \log ... more >>>


TR15-111 | 8th July 2015
Diptarka Chakraborty, Elazar Goldenberg, Michal Koucky

Low Distortion Embedding from Edit to Hamming Distance using Coupling

Revisions: 1


The Hamming and the edit metrics are two common notions of measuring distances between pairs of strings $x,y$ lying in the Boolean hypercube. The edit distance between $x$ and $y$ is defined as the minimum number of character insertion, deletion, and bit flips needed for converting $x$ into $y$. ... more >>>


TR18-129 | 13th July 2018
Jelani Nelson, Huacheng Yu

Optimal Lower Bounds for Distributed and Streaming Spanning Forest Computation

Revisions: 1

We show optimal lower bounds for spanning forest computation in two different models:

* One wants a data structure for fully dynamic spanning forest in which updates can insert or delete edges amongst a base set of $n$ vertices. The sole allowed query asks for a spanning forest, which the ... more >>>


TR21-064 | 5th May 2021
Noah Singer, Madhu Sudan, Santhoshini Velusamy

Streaming approximation resistance of every ordering CSP

Revisions: 3

An ordering constraint satisfaction problem (OCSP) is given by a positive integer $k$ and a constraint predicate $\Pi$ mapping permutations on $\{1,\ldots,k\}$ to $\{0,1\}$. Given an instance of OCSP$(\Pi)$ on $n$ variables and $m$ constraints, the goal is to find an ordering of the $n$ variables that maximizes the number ... more >>>


TR21-159 | 15th November 2021
Lijie Chen, Ce Jin, Rahul Santhanam, Ryan Williams

Constructive Separations and Their Consequences

For a complexity class $C$ and language $L$, a constructive separation of $L \notin C$ gives an efficient algorithm (also called a refuter) to find counterexamples (bad inputs) for every $C$-algorithm attempting to decide $L$. We study the questions: Which lower bounds can be made constructive? What are the consequences ... more >>>


TR22-066 | 4th May 2022
Joanna Boyland, Michael Hwang, Tarun Prasad, Noah Singer, Santhoshini Velusamy

On sketching approximations for symmetric Boolean CSPs

A Boolean maximum constraint satisfaction problem, Max-CSP\((f)\), is specified by a predicate \(f:\{-1,1\}^k\to\{0,1\}\). An \(n\)-variable instance of Max-CSP\((f)\) consists of a list of constraints, each of which applies \(f\) to \(k\) distinct literals drawn from the \(n\) variables. For \(k=2\), Chou, Golovnev, and Velusamy [CGV20, FOCS 2020] obtained explicit ratios ... more >>>


TR24-175 | 4th November 2024
Mark Braverman, Or Zamir

Optimality of Frequency Moment Estimation

Estimating the second frequency moment of a stream up to $(1\pm\varepsilon)$ multiplicative error requires at most $O(\log n / \varepsilon^2)$ bits of space, due to a seminal result of Alon, Matias, and Szegedy. It is also known that at least $\Omega(\log n + 1/\varepsilon^{2})$ space is needed.
We prove an ... more >>>




ISSN 1433-8092 | Imprint