Consider two parties who wish to communicate in order to execute some interactive protocol $\pi$. However, the communication channel between them is noisy: An adversary sees everything that is transmitted over the channel and can change a constant fraction of the bits as he pleases, thus interrupting the execution of ... more >>>
Interactive coding, pioneered by Schulman (FOCS 1992, STOC 1993), is concerned with making communication protocols resilient to adversarial noise. The canonical model allows the adversary to alter a small constant fraction of symbols, chosen at the adversary's discretion, as they pass through the communication channel. Braverman, Gelles, Mao, and Ostrovsky ... more >>>
Multiparty interactive coding allows a network of $n$ parties to perform distributed computations when the communication channels suffer from noise. Previous results (Rajagopalan and Schulman, STOC '94) obtained a multiparty interactive coding protocol, resilient to random noise, with a blowup of $O(\log(\Delta+1))$ for networks whose topology has a maximal degree ... more >>>
We study the effect of noise on the $n$-party beeping model. In this model, in every round, each party may decide to either `beep' or not. All parties hear a beep if and only if at least one party beeps. The beeping model is becoming increasingly popular, as it offers ... more >>>
We consider the celebrated radio network model for abstracting communication in wireless networks. In this model, in any round, each node in the network may broadcast a message to all its neighbors. However, a node is able to hear a message broadcast by a neighbor only if no collision occurred, ... more >>>
We devise a deterministic interactive coding scheme with rate $1-O(\sqrt{\varepsilon\log(1/\varepsilon)})$ against $\varepsilon$-fraction of adversarial errors. The rate we obtain is tight by a result of Kol and Raz (STOC 2013). Prior to this work, deterministic coding schemes for any constant fraction $\varepsilon>0$ of adversarial errors could obtain rate no larger ... more >>>
A tree code is an edge-coloring of the complete infinite binary tree such that every two nodes of equal depth have a fraction--bounded away from $0$--of mismatched colors between the corresponding paths to their least common ancestor. Tree codes were introduced in a seminal work by Schulman (STOC 1993) and ... more >>>
Interactive error correcting codes are codes that encode a two party communication protocol to an error-resilient protocol that succeeds even if a constant fraction of the communicated symbols are adversarially corrupted, at the cost of increasing the communication by a constant factor. What is the largest fraction of corruptions that ... more >>>
We study the error resilience of the message exchange task: Two parties, each holding a private input, want to exchange their inputs. However, the channel connecting them is governed by an adversary that may corrupt a constant fraction of the transmissions. What is the maximum fraction of corruptions that still ... more >>>
Let $\Pi$ be a protocol over the $n$-party broadcast channel, where in each round, a pre-specified party broadcasts a symbol to all other parties. We wish to design a scheme that takes such a protocol $\Pi$ as input and outputs a noise resilient protocol $\Pi'$ that simulates $\Pi$ over the ... more >>>
Given a noiseless protocol $\pi_0$ computing a function $f(x, y)$ of Alice and Bob's private inputs $x, y$, the goal of interactive coding is to construct an error-resilient protocol $\pi$ computing $f$ such that even if some fraction of the communication is adversarially corrupted, both parties still learn $f(x, y)$. ... more >>>
In this work, we design an interactive coding scheme that converts any two party interactive protocol $\Pi$ into another interactive protocol $\Pi'$, such that even if errors are introduced during the execution of $\Pi'$, the parties are able to determine what the outcome of running $\Pi$ would be in an ... more >>>
Single-hop radio networks (SHRN) are a well studied abstraction of communication over a wireless channel. In this model, in every round, each of the $n$ participating parties may decide to broadcast a message to all the others, potentially causing collisions. We consider the SHRN model in the presence of stochastic ... more >>>
Kol and Raz [STOC 2013] showed how to simulate any alternating two-party communication protocol designed to work over the noiseless channel, by a protocol that works over a stochastic channel that corrupts each sent symbol with probability $\epsilon>0$ independently, with only a $1+\mathcal{O}(\sqrt{\H(\epsilon)})$ blowup to the communication. In particular, this ... more >>>