Alexander A. Sherstov

The approximate degree of a Boolean function $f$ is the least degree of a real polynomial

that approximates $f$ within $1/3$ at every point. We prove that the function $\bigwedge_{i=1}^{n}\bigvee_{j=1}^{n}x_{ij}$,

known as the AND-OR tree, has approximate degree $\Omega(n).$ This lower bound is tight

and closes a ...
more >>>

Mark Bun, Justin Thaler

The $\epsilon$-approximate degree of a Boolean function $f: \{-1, 1\}^n \to \{-1, 1\}$ is the minimum degree of a real polynomial that approximates $f$ to within $\epsilon$ in the $\ell_\infty$ norm. We prove several lower bounds on this important complexity measure by explicitly constructing solutions to the dual of an ... more >>>

Mark Bun, Justin Thaler

We establish a generic form of hardness amplification for the approximability of constant-depth Boolean circuits by polynomials. Specifically, we show that if a Boolean circuit cannot be pointwise approximated by low-degree polynomials to within constant error in a certain one-sided sense, then an OR of disjoint copies of that circuit ... more >>>

Mark Bun, Justin Thaler

The approximate degree of a Boolean function $f: \{-1, 1\}^n \to \{-1, 1\}$ is the minimum degree of a real polynomial that approximates $f$ to within error $1/3$ in the $\ell_\infty$ norm. In an influential result, Aaronson and Shi (J. ACM 2004) proved tight $\tilde{\Omega}(n^{1/3})$ and $\tilde{\Omega}(n^{2/3})$ lower bounds on ... more >>>

Andrej Bogdanov, Yuval Ishai, Emanuele Viola, Christopher Williamson

We say that a function $f\colon \Sigma^n \to \{0, 1\}$ is $\epsilon$-fooled by $k$-wise indistinguishability if $f$ cannot distinguish with advantage $\epsilon$ between any two distributions $\mu$ and $\nu$ over $\Sigma^n$ whose projections to any $k$ symbols are identical. We study the class of functions $f$ that are fooled by ... more >>>

Mark Bun, Justin Thaler

Threshold weight, margin complexity, and Majority-of-Threshold circuit size are basic complexity measures of Boolean functions that arise in learning theory, communication complexity, and circuit complexity. Each of these measures might exhibit a chasm at depth three: namely, all polynomial size Boolean circuits of depth two have polynomial complexity under the ... more >>>

Adam Bouland, Lijie Chen, Dhiraj Holden, Justin Thaler, Prashant Nalini Vasudevan

In both query and communication complexity, we give separations between the class NISZK, containing those problems with non-interactive statistical zero knowledge proof systems, and the class UPP, containing those problems with randomized algorithms with unbounded error. These results significantly improve on earlier query separations of Vereschagin [Ver95] and Aaronson [Aar12] ... more >>>

Mark Bun, Justin Thaler

The approximate degree of a Boolean function $f \colon \{-1, 1\}^n \rightarrow \{-1, 1\}$ is the least degree of a real polynomial that approximates $f$ pointwise to error at most $1/3$. We introduce a generic method for increasing the approximate degree of a given function, while preserving its computability by ... more >>>

Mark Bun, Robin Kothari, Justin Thaler

The approximate degree of a Boolean function $f$ is the least degree of a real polynomial that approximates $f$ pointwise to error at most $1/3$. The approximate degree of $f$ is known to be a lower bound on the quantum query complexity of $f$ (Beals et al., FOCS 1998 and ... more >>>

Alexander A. Sherstov

The approximate degree of a Boolean function $f(x_{1},x_{2},\ldots,x_{n})$ is the minimum degree of a real polynomial that approximates $f$ pointwise within $1/3$. Upper bounds on approximate degree have a variety of applications in learning theory, differential privacy, and algorithm design in general. Nearly all known upper bounds on approximate degree ... more >>>

Mark Bun, Justin Thaler

We prove two new results about the inability of low-degree polynomials to uniformly approximate constant-depth circuits, even to slightly-better-than-trivial error. First, we prove a tight $\tilde{\Omega}(n^{1/2})$ lower bound on the threshold degree of the Surjectivity function on $n$ variables. This matches the best known threshold degree bound for any AC$^0$ ... more >>>

Mark Bun, Robin Kothari, Justin Thaler

We give new quantum algorithms for evaluating composed functions whose inputs may be shared between bottom-level gates. Let $f$ be a Boolean function and consider a function $F$ obtained by applying $f$ to conjunctions of possibly overlapping subsets of $n$ variables. If $f$ has quantum query complexity $Q(f)$, we give ... more >>>

Andrej Bogdanov

We give a new proof that the approximate degree of the AND function over $n$ inputs is $\Omega(\sqrt{n})$. Our proof extends to the notion of weighted degree, resolving a conjecture of Kamath and Vasudevan. As a consequence we confirm that the approximate degree of any read-once depth-2 De Morgan formula ... more >>>

Andrej Bogdanov, Nikhil Mande, Justin Thaler, Christopher Williamson

The $\epsilon$-approximate degree $\widetilde{\text{deg}}_\epsilon(f)$ of a Boolean function $f$ is the least degree of a real-valued polynomial that approximates $f$ pointwise to error $\epsilon$. The approximate degree of $f$ is at least $k$ iff there exists a pair of probability distributions, also known as a dual polynomial, that are perfectly ... more >>>

Alexander A. Sherstov, Justin Thaler

The $\epsilon$-approximate degree of a function $f\colon X \to \{0, 1\}$ is the least degree of a multivariate real polynomial $p$ such that $|p(x)-f(x)| \leq \epsilon$ for all $x \in X$. We determine the $\epsilon$-approximate degree of the element distinctness function, the surjectivity function, and the permutation testing problem, showing ... more >>>

Alexander A. Sherstov

The approximate degree of a Boolean function $f\colon\{0,1\}^n\to\{0,1\}$ is the minimum degree of a real polynomial $p$ that approximates $f$ pointwise: $|f(x)-p(x)|\leq1/3$ for all $x\in\{0,1\}^n.$ For every $\delta>0,$ we construct CNF and DNF formulas of polynomial size with approximate degree $\Omega(n^{1-\delta}),$ essentially matching the trivial upper bound of $n.$ This ... more >>>

Mark Bun, Nadezhda Voronova

The approximate degree of a Boolean function is the minimum degree of real polynomial that approximates it pointwise. For any Boolean function, its approximate degree serves as a lower bound on its quantum query complexity, and generically lifts to a quantum communication lower bound for a related function.

We ... more >>>

Sourav Chakraborty, Chandrima Kayal, Rajat Mittal, Manaswi Paraashar, Swagato Sanyal, Nitin Saurabh

For any Boolean functions $f$ and $g$, the question whether $\text{R}(f\circ g) = \tilde{\Theta}(\text{R}(f) \cdot \text{R}(g))$, is known as the composition question for the randomized query complexity. Similarly, the composition question for the approximate degree asks whether $\widetilde{\text{deg}}(f\circ g) = \tilde{\Theta}(\widetilde{\text{deg}}(f)\cdot\widetilde{\text{deg}}(g))$. These questions are two of the most important and ... more >>>