In this paper, we study the approximability of the metric Traveling Salesman Problem, one of the most widely studied problems in combinatorial optimization. Currently, the best known hardness of approximation bounds are 185/184 for the symmetric case (due to Lampis) and 117/116 for the asymmetric case (due to Papadimitriou and ... more >>>
We prove explicit approximation hardness results for the Graphic TSP on cubic and subcubic graphs as well as the new inapproximability bounds for the corresponding instances of the (1,2)-TSP. The proof technique uses new modular constructions of simulating gadgets for the restricted cubic and subcubic instances. The modular constructions used ... more >>>
First of all we give some reasons that “natural proofs” built not a barrier to prove P not= NP using Boolean complexity. Then we investigate the approximation method for its extension to prove super-polynomial lower bounds for the non-monotone complexity of suitable Boolean functions in NP or to understand why ... more >>>