We present a general framework for constructing high rate error correcting codes that are locally correctable (and hence locally decodable if linear) with a sublinear number of queries, based on lifting codes with respect to functions on the coordinates. Our approach generalizes the lifting of affine-invariant codes of Guo, Kopparty, ... more >>>
A locally correctable code (LCC) is an error correcting code that allows correction of any arbitrary coordinate of a corrupted codeword by querying only a few coordinates.
We show that any zero-error $2$-query locally correctable code $\mathcal{C}: \{0,1\}^k \to \Sigma^n$ that can correct a constant fraction of corrupted symbols must ...
more >>>
In this work, we show new and improved error-correcting properties of folded Reed-Solomon codes and multiplicity codes. Both of these families of codes are based on polynomials over finite fields, and both have been the sources of recent advances in coding theory. Folded Reed-Solomon codes were the first explicit constructions ... more >>>
In their highly influential paper, Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan (STOC 2004) introduced the notion of a relaxed locally decodable code (RLDC). Similarly to a locally decodable code (Katz-Trevisan; STOC 2000), the former admits access to any desired message symbol with only a few queries to a possibly corrupted ... more >>>
Existing proofs that deduce BPL=L from circuit lower bounds convert randomized algorithms into deterministic algorithms with large constant overhead in space. We study space-bounded derandomization with minimal footprint, and ask what is the minimal possible space overhead for derandomization.
We show that $BPSPACE[S] \subseteq DSPACE[c \cdot S]$ for $c \approx ...
more >>>
We present simple constructions of good approximate locally decodable codes (ALDCs) in the presence of a $\delta$-fraction of errors for $\delta<1/2$. In a standard locally decodable code $C \colon \Sigma_1^k \to \Sigma_2^n$, there is a decoder $M$ that on input $i \in [k]$ correctly outputs the $i$-th symbol of a ... more >>>
We revisit the known proof of the lower bound on the length of relaxed locally decodable codes, providing an arguably simpler exposition that yields a slightly better lower bound for the non-adaptive case and a weaker bound in the general case.
Recall that a locally decodable code is an error ... more >>>
Locally decodable codes (LDC's) are error-correcting codes that allow recovery of individual message indices by accessing only a constant number of codeword indices. For substitution errors, it is evident that LDC's exist -- Hadamard codes are examples of $2$-query LDC's. Research on this front has focused on finding the optimal ... more >>>
A locally decodable code (LDC) is an error correcting code that allows for recovery of any desired bit in the message based on a constant number of randomly selected bits in the possibly corrupted codeword.
A relaxed LDC requires correct recovery only in case of actual codewords, while requiring that ...
more >>>