Non-malleable codes provide a useful and meaningful security guarantee in situations where traditional error-correction (and even error-detection) is impossible; for example, when the attacker can completely overwrite the encoded message. Informally, a code is non-malleable if the message contained in a modified codeword is either the original message, or a ... more >>>
The notion of non-malleable codes was introduced as a relaxation of standard error-correction and error-detection. Informally, a code is non-malleable if the message contained in a modified codeword is either the original message, or a completely unrelated value.
In the information theoretic setting, although existence of such codes for various ... more >>>
Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs~\cite{DPW10}, provide a useful message integrity guarantee in situations where traditional error-correction (and even error-detection) is impossible; for example, when the attacker can completely overwrite the encoded message. Informally, a code is non-malleable if the message contained in a modified codeword is either ... more >>>
We construct efficient, unconditional non-malleable codes that are secure against tampering functions computed by small-depth circuits. For constant-depth circuits of polynomial size (i.e.~$\mathsf{AC^0}$ tampering functions), our codes have codeword length $n = k^{1+o(1)}$ for a $k$-bit message. This is an exponential improvement of the previous best construction due to Chattopadhyay ... more >>>
At ITCS 2010, Dziembowski, Pietrzak, and Wichs introduced Non-malleable Codes (NMCs). Non-malleability is one of the strongest and most challenging notions of security considered in cryptography and protects against tampering attacks. In the context of coding schemes, non-malleability requires that it be infeasible to tamper the codeword of a message ... more >>>
We give an explicit construction of non-malleable codes with rate $1-o(1)$ for the tampering class of poly-size circuits. This rate is optimal, and improves upon the previous explicit construction of Ball, Dachman-Soled and Loss (CRYPTO 2022) which achieves a rate smaller than $\frac{1}{n}$. Our codes are based on the same ... more >>>