Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > NON-MALLEABLE CODES:
Reports tagged with Non-malleable codes:
TR13-081 | 6th June 2013
Divesh Aggarwal, Yevgeniy Dodis, Shachar Lovett

Non-malleable Codes from Additive Combinatorics

Non-malleable codes provide a useful and meaningful security guarantee in situations where traditional error-correction (and even error-detection) is impossible; for example, when the attacker can completely overwrite the encoded message. Informally, a code is non-malleable if the message contained in a modified codeword is either the original message, or a ... more >>>


TR14-069 | 5th May 2014
Shashank Agrawal, Divya Gupta, Hemanta Maji, Omkant Pandey, Manoj Prabhakaran

Explicit Non-Malleable Codes Resistant to Permutations

The notion of non-malleable codes was introduced as a relaxation of standard error-correction and error-detection. Informally, a code is non-malleable if the message contained in a modified codeword is either the original message, or a completely unrelated value.

In the information theoretic setting, although existence of such codes for various ... more >>>


TR14-128 | 10th October 2014
Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana , Maciej Obremski

Non-malleable Reductions and Applications

Revisions: 3

Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs~\cite{DPW10}, provide a useful message integrity guarantee in situations where traditional error-correction (and even error-detection) is impossible; for example, when the attacker can completely overwrite the encoded message. Informally, a code is non-malleable if the message contained in a modified codeword is either ... more >>>


TR18-040 | 21st February 2018
Marshall Ball, Dana Dachman-Soled, Siyao Guo, Tal Malkin, Li-Yang Tan

Non-Malleable Codes for Small-Depth Circuits

We construct efficient, unconditional non-malleable codes that are secure against tampering functions computed by small-depth circuits. For constant-depth circuits of polynomial size (i.e.~$\mathsf{AC^0}$ tampering functions), our codes have codeword length $n = k^{1+o(1)}$ for a $k$-bit message. This is an exponential improvement of the previous best construction due to Chattopadhyay ... more >>>




ISSN 1433-8092 | Imprint