Neeraj Kayal, Chandan Saha, Ramprasad Saptharishi

We consider arithmetic formulas consisting of alternating layers of addition $(+)$ and multiplication $(\times)$ gates such that the fanin of all the gates in any fixed layer is the same. Such a formula $\Phi$ which additionally has the property that its formal/syntactic degree is at most twice the (total) degree ... more >>>

Arnaud Durand, Meena Mahajan, Guillaume Malod, Nicolas de Rugy-Altherre, Nitin Saurabh

The VP versus VNP question, introduced by Valiant, is probably the most important open question in algebraic complexity theory. Thanks to completeness results, a variant of this question, VBP versus VNP, can be succinctly restated as asking whether the permanent of a generic matrix can be written as a determinant ... more >>>

Meena Mahajan, Nitin Saurabh

We provide a list of new natural VNP-intermediate polynomial

families, based on basic (combinatorial) NP-complete problems that

are complete under \emph{parsimonious} reductions. Over finite

fields, these families are in VNP, and under the plausible

hypothesis $\text{Mod}_pP \not\subseteq P/\text{poly}$, are neither VNP-hard (even under

oracle-circuit reductions) nor in VP. Prior to ...
more >>>

Pranjal Dutta, Nitin Saxena, Amit Sinhababu

Newton iteration (NI) is an almost 350 years old recursive formula that approximates a simple root of a polynomial quite rapidly. We generalize it to a matrix recurrence (allRootsNI) that approximates all the roots simultaneously. In this form, the process yields a better circuit complexity in the case when the ... more >>>

Amir Yehudayoff

This work is about the monotone versions of the algebraic complexity classes VP and VNP. The main result is that monotone VNP is strictly stronger than monotone VP.

Pranjal Dutta, Nitin Saxena, Thomas Thierauf

We consider the univariate polynomial $f_d:=(x+1)^d$ when represented as a sum of constant-powers of univariate polynomials. We define a natural measure for the model, the support-union, and conjecture that it is $\Omega(d)$ for $f_d$.

We show a stunning connection of the conjecture to the two main problems in algebraic ... more >>>