We design two deterministic polynomial time algorithms for variants of a problem introduced by Edmonds in 1967: determine the rank of a matrix $M$ whose entries are homogeneous linear polynomials over the integers. Given a linear subspace $\mathcal{B}$ of the $n \times n$ matrices over some field $\mathbb{F}$, we consider ... more >>>
Let $X=X_1\sqcup X_2\sqcup\ldots\sqcup X_k$ be a partitioned set of variables such that the variables in each part $X_i$ are noncommuting but for any $i\neq j$, the variables $x \in X_i$ commute with the variables $x' \in X_j$. Given as input a square matrix $T$ whose entries are linear forms over ... more >>>