The multiplicity Schwartz-Zippel lemma bounds the total multiplicity of zeroes of a multivariate polynomial on a product set. This lemma motivates the multiplicity codes of Kopparty, Saraf and Yekhanin [J. ACM, 2014], who showed how to use this lemma to construct high-rate locally-decodable codes. However, the algorithmic results about these ... more >>>
The classical Reed-Muller codes over a finite field $\mathbb{F}_q$ are based on evaluations of $m$-variate polynomials of degree at most $d$ over a product set $U^m$, for some $d$ less than $|U|$. Because of their good distance properties, as well as the ubiquity and expressive power of polynomials, these codes ... more >>>
We study uniquely decodable codes and list decodable codes in the high-noise regime, specifically codes that are uniquely decodable from $\frac{1-\varepsilon}{2}$ fraction of errors and list decodable from $1-\varepsilon$ fraction of errors. We present several improved explicit constructions that achieve near-optimal rates, as well as efficient or even linear-time decoding ... more >>>
Let $g(X)$ be a polynomial over a finite field ${\mathbb F}_q$ with degree $o(q^{1/2})$, and let $\chi$ be the quadratic residue character. We give a polynomial time algorithm to recover $g(X)$ (up to perfect square factors) given the values of $\chi \circ g$ on ${\mathbb F}_q$, with up to a ... more >>>