Martin Schwarz, Maarten Van den Nest

We show that several quantum circuit families can be simulated efficiently classically if it is promised that their output distribution is approximately sparse i.e. the distribution is close to one where only a polynomially small, a priori unknown subset of the measurement probabilities are nonzero. Classical simulations are thereby obtained ... more >>>

Mahdi Cheraghchi, Piotr Indyk

For every fixed constant $\alpha > 0$, we design an algorithm for computing the $k$-sparse Walsh-Hadamard transform of an $N$-dimensional vector $x \in \mathbb{R}^N$ in time $k^{1+\alpha} (\log N)^{O(1)}$. Specifically, the algorithm is given query access to $x$ and computes a $k$-sparse $\tilde{x} \in \mathbb{R}^N$ satisfying $\|\tilde{x} - \hat{x}\|_1 \leq ... more >>>

Shafi Goldwasser, Guy Rothblum, Jonathan Shafer, Amir Yehudayoff

We consider the following question: using a source of labeled data and interaction with an untrusted prover, what is the complexity of verifying that a given hypothesis is "approximately correct"? We study interactive proof systems for PAC verification, where a verifier that interacts with a prover is required to accept ... more >>>

Noga Ron-Zewi, Ronen Shaltiel, Nithin Varma

A binary code $\text{Enc}:\{0,1\}^k \rightarrow \{0,1\}^n$ is $(\frac{1}{2}-\varepsilon,L)$-list decodable if for every $w \in \{0,1\}^n$, there exists a set $\text{List}(w)$ of size at most $L$, containing all messages $m \in \{0,1\}^k$ such that the relative Hamming distance between $\text{Enc}(m)$ and $w$ is at most $\frac{1}{2}-\varepsilon$.

A $q$-query local list-decoder is ...
more >>>