{\em Does derandomization of probabilistic algorithms become easier when the number of ``bad'' random inputs is extremely small?}
In relation to the above question, we put forward the following {\em quantified derandomization challenge}:
For a class of circuits $\cal C$ (e.g., P/poly or $AC^0,AC^0[2]$) and a bounding function $B:\N\to\N$ (e.g., ...
more >>>
The celebrated $\mathbf{IP}=\mathbf{PSPACE}$ Theorem gives an efficient interactive proof for any bounded-space algorithm. In this work we study interactive proofs for non-deterministic bounded space computations. While Savitch's Theorem shows that nondeterministic bounded-space algorithms can be simulated by deterministic bounded-space algorithms, this simulation has a quadratic overhead. We give interactive protocols ... more >>>