Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with Matrix Powering:
TR13-177 | 10th December 2013
Eric Allender, Nikhil Balaji, Samir Datta

Low-depth Uniform Threshold Circuits and the Bit-Complexity of Straight Line Programs

Revisions: 1

We present improved uniform TC$^0$ circuits for division, matrix powering, and related problems, where the improvement is in terms of ``majority depth'' (initially studied by Maciel and Therien). As a corollary, we obtain improved bounds on the complexity of certain problems involving arithmetic circuits, which are known to lie in ... more >>>

TR20-087 | 8th June 2020
Uma Girish, Ran Raz, Wei Zhan

Quantum Logspace Algorithm for Powering Matrices with Bounded Norm

Revisions: 1

We give a quantum logspace algorithm for powering contraction matrices, that is, matrices with spectral norm at most 1. The algorithm gets as an input an arbitrary $n\times n$ contraction matrix $A$, and a parameter $T \leq poly(n)$ and outputs the entries of $A^T$, up to (arbitrary) polynomially small additive ... more >>>

ISSN 1433-8092 | Imprint