Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > KW RELATION:
Reports tagged with KW relation:
TR13-190 | 28th December 2013
Dmytro Gavinsky, Or Meir, Omri Weinstein, Avi Wigderson

Toward Better Formula Lower Bounds: An Information Complexity Approach to the KRW Composition Conjecture

Revisions: 11

One of the major open problems in complexity theory is proving super-polynomial lower bounds for circuits with logarithmic depth (i.e., $\mathbf{P}\not\subseteq\mathbf{NC}_1~$). This problem is interesting for two reasons: first, it is tightly related to understanding the power of parallel computation and of small-space computation; second, it is one of the ... more >>>


TR19-120 | 11th September 2019
Or Meir

Toward Better Depth Lower Bounds: Two Results on the Multiplexor Relation

Revisions: 2

One of the major open problems in complexity theory is proving super-logarithmic
lower bounds on the depth of circuits (i.e., $\mathbf{P}\not\subseteq\mathbf{NC}^1$). Karchmer, Raz, and Wigderson (Computational Complexity 5, 3/4) suggested to approach this problem by proving that depth complexity behaves "as expected" with respect to the composition of functions $f ... more >>>


TR20-099 | 6th July 2020
Susanna de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere

KRW Composition Theorems via Lifting

Revisions: 1

One of the major open problems in complexity theory is proving super-logarithmic lower bounds on the depth of circuits (i.e., $\mathbf{P}\not\subseteq\mathbf{NC}^1$). Karchmer, Raz, and Wigderson (Computational Complexity 5(3/4), 1995) suggested to approach this problem by proving that depth complexity behaves “as expected” with respect to the composition of functions $f ... more >>>


TR23-078 | 30th May 2023
Or Meir

Toward Better Depth Lower Bounds: A KRW-like theorem for Strong Composition

Revisions: 3

One of the major open problems in complexity theory is proving super-logarithmic lower bounds on the depth of circuits (i.e., $\mathbf{P}\not\subseteq \mathbf{NC}^{1}$). Karchmer, Raz, and Wigderson (Computational Complexity 5(3/4), 1995) suggested to approach this problem by proving that depth complexity of a composition of functions $f \diamond g$ is roughly ... more >>>




ISSN 1433-8092 | Imprint