In this paper we show that the problem of deterministically factoring multivariate polynomials reduces to the problem of deterministic polynomial identity testing. Specifically, we show that given an arithmetic circuit (either explicitly or via black-box access) that computes a polynomial $f(X_1,\ldots,X_n)$, the task of computing arithmetic circuits for the factors ... more >>>
In this paper we study the problem of efficiently factorizing polynomials in the free noncommutative ring F of polynomials in noncommuting variables x_1,x_2,…,x_n over the field F. We obtain the following result:
Given a noncommutative arithmetic formula of size s computing a noncommutative polynomial f in F as input, where ... more >>>
We design a deterministic subexponential time algorithm that takes as input a multivariate polynomial $f$ computed by a constant-depth circuit over rational numbers, and outputs a list $L$ of circuits (of unbounded depth and possibly with division gates) that contains all irreducible factors of $f$ computable by constant-depth circuits. This ... more >>>
For a polynomial $f$ from a class $\mathcal{C}$ of polynomials, we show that the problem to compute all the constant degree irreducible factors of $f$ reduces in polynomial time to polynomial identity tests (PIT) for class $\mathcal{C}$ and divisibility tests of $f$ by constant degree polynomials. We apply the result ... more >>>