We introduce and study a new model of interactive proofs: AM(k), or Arthur-Merlin with k non-communicating Merlins. Unlike with the better-known MIP, here the assumption is that each Merlin receives an independent random challenge from Arthur. One motivation for this model (which we explore in detail) comes from the close ... more >>>
We prove a deterministic exponential time upper bound for Quantum Merlin-Arthur games with k unentangled provers. This is the first non-trivial upper bound of QMA(k) better than NEXP and can be considered an exponential improvement, unless EXP=NEXP. The key ideas of our proof are to use perturbation theory to reduce ... more >>>
We investigate two resources whose effects on quantum interactive proofs remain poorly understood: the promise of unentanglement, and the verifier’s ability to condition on an intermediate measurement, which we call post-measurement branching. We first show that unentanglement can dramatically increase computational power: three-round unentangled quantum interactive proofs equal NEXP, even ... more >>>