Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > COIN PROBLEM:
Reports tagged with coin problem:
TR17-090 | 15th May 2017
Chin Ho Lee, Emanuele Viola

The coin problem for product tests

Let $X_{m, \eps}$ be the distribution over $m$ bits $(X_1, \ldots, X_m)$
where the $X_i$ are independent and each $X_i$ equals $1$ with
probability $(1+\eps)/2$ and $0$ with probability $(1-\eps)/2$. We
consider the smallest value $\eps^*$ of $\eps$ such that the distributions
$X_{m,\eps}$ and $X_{m,0}$ can be distinguished with constant
more >>>


TR18-157 | 10th September 2018
Nutan Limaye, Karteek Sreenivasiah, Srikanth Srinivasan, Utkarsh Tripathi, S Venkitesh

The Coin Problem in Constant Depth: Sample Complexity and Parity gates

Revisions: 2

The $\delta$-Coin Problem is the computational problem of distinguishing between coins that are heads with probability $(1+\delta)/2$ or $(1-\delta)/2,$ where $\delta$ is a parameter that is going to $0$. We study the complexity of this problem in the model of constant-depth Boolean circuits and prove the following results.

1. Upper ... more >>>


TR19-018 | 18th February 2019
Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova, Avishay Tal

AC0[p] Lower Bounds against MCSP via the Coin Problem

Minimum Circuit Size Problem (MCSP) asks to decide if a given truth table of an $n$-variate boolean function has circuit complexity less than a given parameter $s$. We prove that MCSP is hard for constant-depth circuits with mod $p$ gates, for any prime $p\geq 2$ (the circuit class $AC^0[p])$. Namely, ... more >>>


TR19-087 | 10th June 2019
Rohit Agrawal

Coin Theorems and the Fourier Expansion

Revisions: 1

In this note we compare two measures of the complexity of a class $\mathcal F$ of Boolean functions studied in (unconditional) pseudorandomness: $\mathcal F$'s ability to distinguish between biased and uniform coins (the coin problem), and the norms of the different levels of the Fourier expansion of functions in $\mathcal ... more >>>


TR19-133 | 2nd October 2019
Nutan Limaye, Srikanth Srinivasan, Utkarsh Tripathi

More on $AC^0[\oplus]$ and Variants of the Majority Function

Revisions: 1

In this paper we prove two results about $AC^0[\oplus]$ circuits.

We show that for $d(N) = o(\sqrt{\log N/\log \log N})$ and $N \leq s(N) \leq 2^{dN^{1/d^2}}$ there is an explicit family of functions $\{f_N:\{0,1\}^N\rightarrow \{0,1\}\}$ such that
$f_N$ has uniform $AC^0$ formulas of depth $d$ and size at ... more >>>


TR20-046 | 13th April 2020
Srikanth Srinivasan

A Robust Version of Heged\H{u}s's Lemma, with Applications

Heged\H{u}s's lemma is the following combinatorial statement regarding polynomials over finite fields. Over a field $\mathbb{F}$ of characteristic $p > 0$ and for $q$ a power of $p$, the lemma says that any multilinear polynomial $P\in \mathbb{F}[x_1,\ldots,x_n]$ of degree less than $q$ that vanishes at all points in $\{0,1\}^n$ of ... more >>>


TR20-139 | 11th September 2020
Mark Braverman, Sumegha Garg, David Woodruff

The Coin Problem with Applications to Data Streams

Consider the problem of computing the majority of a stream of $n$ i.i.d. uniformly random bits. This problem, known as the {\it coin problem}, is central to a number of counting problems in different data stream models. We show that any streaming algorithm for solving this problem with large constant ... more >>>


TR21-083 | 21st June 2021
Mark Braverman, Sumegha Garg, Or Zamir

Tight Space Complexity of the Coin Problem

In the coin problem we are asked to distinguish, with probability at least $2/3$, between $n$ $i.i.d.$ coins which are heads with probability $\frac{1}{2}+\beta$ from ones which are heads with probability $\frac{1}{2}-\beta$. We are interested in the space complexity of the coin problem, corresponding to the width of a read-once ... more >>>




ISSN 1433-8092 | Imprint