Gillat Kol, Shay Moran, Amir Shpilka, Amir Yehudayoff

We consider two known lower bounds on randomized communication complexity: The smooth rectangle bound and the logarithm of the approximate non-negative rank. Our main result is that they are the same up to a multiplicative constant and a small additive term.

The logarithm of the nonnegative rank is known to ...
more >>>

Eli Ben-Sasson, Gal Maor

We give a self contained proof of a logarithmic lower bound on the communication complexity of any non redundant function, given that there is no access to shared randomness. This bound was first stated in Yao's seminal paper [STOC 1979], but no full proof appears in the literature.

Our proof ... more >>>

Anurag Anshu, Naresh Goud, Rahul Jain, Srijita Kundu, Priyanka Mukhopadhyay

We show that for any (partial) query function $f:\{0,1\}^n\rightarrow \{0,1\}$, the randomized communication complexity of $f$ composed with $\mathrm{Index}^n_m$ (with $m= \poly(n)$) is at least the randomized query complexity of $f$ times $\log n$. Here $\mathrm{Index}_m : [m] \times \{0,1\}^m \rightarrow \{0,1\}$ is defined as $\mathrm{Index}_m(x,y)= y_x$ (the $x$th bit ... more >>>