Manindra Agrawal, Rohit Gurjar, Arpita Korwar, Nitin Saxena

We give a $n^{O(\log n)}$-time ($n$ is the input size) blackbox polynomial identity testing algorithm for unknown-order read-once oblivious algebraic branching programs (ROABP). The best time-complexity known for this class was $n^{O(\log^2 n)}$ due to Forbes-Saptharishi-Shpilka (STOC 2014), and that too only for multilinear ROABP. We get rid of their ... more >>>

Rohit Gurjar, Arpita Korwar, Nitin Saxena

We give improved hitting-sets for two special cases of Read-once Oblivious Arithmetic Branching Programs (ROABP). First is the case of an ROABP with known variable order. The best hitting-set known for this case had cost $(nw)^{O(\log n)}$, where $n$ is the number of variables and $w$ is the width of ... more >>>

Pranav Bisht, Nitin Saxena

Blackbox polynomial identity testing (PIT) affords 'extreme variable-bootstrapping' (Agrawal et al, STOC'18; PNAS'19; Guo et al, FOCS'19). This motivates us to study log-variate read-once oblivious algebraic branching programs (ROABP). We restrict width of ROABP to a constant and study the more general sum-of-ROABPs model. We give the first poly($s$)-time blackbox ... more >>>

Chandan Saha, Bhargav Thankey

The orbit of an $n$-variate polynomial $f(\mathbf{x})$ over a field $\mathbb{F}$ is the set $\mathrm{orb}(f) := \{f(A\mathbf{x}+\mathbf{b}) : A \in \mathrm{GL}(n,\mathbb{F}) \ \mathrm{and} \ \mathbf{b} \in \mathbb{F}^n\}$. This paper studies explicit hitting sets for the orbits of polynomials computable by certain well-studied circuit classes. This version of the hitting set ... more >>>

Vishwas Bhargava, Sumanta Ghosh

The orbit of an $n$-variate polynomial $f(\mathbf{x})$ over a field $\mathbb{F}$ is the set $\{f(A \mathbf{x} + b)\,\mid\, A\in \mathrm{GL}({n,\mathbb{F}})\mbox{ and }\mathbf{b} \in \mathbb{F}^n\}$, and the orbit of a polynomial class is the union of orbits of all the polynomials in it. In this paper, we give improved constructions of ... more >>>

Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, Amir Shpilka

In this paper, we prove the first super-polynomial and, in fact, exponential lower bound for the model of sum of read-once oblivious algebraic branching programs (ROABPs). In particular, we give an explicit polynomial such that any sum of ROABPs

(equivalently, sum of *ordered* set-multilinear branching programs, each with a ...
more >>>

Vishwas Bhargava, Anamay Tengse

The dimension of partial derivatives (Nisan and Wigderson, 1997) is a popular measure for proving lower bounds in algebraic complexity. It is used to give strong lower bounds on the Waring decomposition of polynomials (called Waring rank). This naturally leads to an interesting open question: does this measure essentially characterize ... more >>>