We present an algebraic-geometric approach for devising a deterministic polynomial time blackbox identity testing (PIT) algorithm for depth-4 circuits with bounded top fanin. Using our approach, we devise such an algorithm for the case when such circuits have bounded bottom fanin and satisfy a certain non-degeneracy condition. In particular, we ... more >>>
In this paper we develop efficient randomized algorithms to solve the black-box reconstruction problem for polynomials(over finite fields) computable by depth three arithmetic circuits with alternating addition/multiplication gates, such that top(output) gate is an addition gate with in-degree $2$. Such circuits naturally compute polynomials of the form $G\times(T_1 + T_2)$, ... more >>>
We prove a higher codimensional radical Sylvester-Gallai type theorem for quadratic polynomials, simultaneously generalizing [Han65, Shp20]. Hansen's theorem is a high-dimensional version of the classical Sylvester-Gallai theorem in which the incidence condition is given by high-dimensional flats instead of lines. We generalize Hansen's theorem to the setting of quadratic forms ... more >>>
In this work, we explore a non-linear extension of the classical Sylvester-Gallai configuration. Let $\mathbb{K}$ be an algebraically closed field of characteristic zero, and let $\mathcal{F} = \{F_1, \ldots, F_m\} \subset \mathbb{K}[x_1, \ldots, x_N]$ denote a collection of irreducible homogeneous polynomials of degree at most $d$, where each $F_i$ is ... more >>>
We prove a non-linear Edelstein-Kelly theorem for polynomials of constant degree, fully settling a stronger form of Conjecture 30 in Gupta (2014), and generalizing the main result of Peleg and Shpilka (STOC 2021) from quadratic polynomials to polynomials of any constant degree.
As a consequence of our result, we obtain ... more >>>