Linear Programs are abundant in practice, and tremendous effort has been put into designing efficient algorithms for such problems, resulting with very efficient (polynomial time) algorithms. A fundamental question is: what is the space complexity of Linear Programming?
It is widely believed that (even approximating) Linear Programming requires a large ... more >>>
This paper aims to derandomize the following problems in the smoothed analysis of Spielman and Teng. Learn Disjunctive Normal Form (DNF), invert Fourier Transforms (FT), and verify small circuits' unsatisfiability. Learning algorithms must predict a future observation from the only $m$ i.i.d. samples of a fixed but unknown joint-distribution $P(G(x),y)$ ... more >>>
We give a new characterization of the Sherali-Adams proof system, showing that there is a degree-$d$ Sherali-Adams refutation of an unsatisfiable CNF formula $C$ if and only if there is an $\varepsilon > 0$ and a degree-$d$ conical junta $J$ such that $viol_C(x) - \varepsilon = J$, where $viol_C(x)$ counts ... more >>>
The width complexity measure plays a central role in Resolution and other propositional proof systems like Polynomial Calculus (under the name of degree). The study of width lower bounds is the most extended method for proving size lower bounds, and it is known that for these systems, proofs with small ... more >>>