Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with hypercontractivity:
TR14-182 | 22nd December 2014
Dana Moshkovitz

Direct Product Testing With Nearly Identical Sets

Comments: 1

In this work we analyze a direct product test in which each of two provers receives a subset of size n of a ground set U,
and the two subsets intersect in about (1-\delta)n elements.
We show that if each of the provers provides labels to the n ... more >>>

TR15-084 | 21st May 2015
Or Ordentlich, Ofer Shayevitz, Omri Weinstein

Dictatorship is the Most Informative Balanced Function at the Extremes

Revisions: 2

Suppose $X$ is a uniformly distributed $n$-dimensional binary vector and $Y$ is obtained by passing $X$ through a binary symmetric channel with crossover probability $\alpha$. A recent conjecture by Courtade and Kumar postulates that $I(f(X);Y)\leq 1-h(\alpha)$ for any Boolean function $f$. In this paper, we prove the conjecture for all ... more >>>

TR16-033 | 10th March 2016
Venkatesan Guruswami, Jaikumar Radhakrishnan

Tight bounds for communication assisted agreement distillation

Suppose Alice holds a uniformly random string $X \in \{0,1\}^N$ and Bob holds a noisy version $Y$ of $X$ where each bit of $X$ is flipped independently with probability $\epsilon \in [0,1/2]$. Alice and Bob would like to extract a common random string of min-entropy at least $k$. In this ... more >>>

TR18-016 | 25th January 2018
Naomi Kirshner, Alex Samorodnitsky

On $\ell_4$ : $\ell_2$ ratio of functions with restricted Fourier support

Revisions: 1

Given a subset $A\subseteq \{0,1\}^n$, let $\mu(A)$ be the maximal ratio between $\ell_4$ and $\ell_2$ norms of a function whose Fourier support is a subset of $A$. We make some simple observations about the connections between $\mu(A)$ and the additive properties of $A$ on one hand, and between $\mu(A)$ and ... more >>>

TR18-037 | 21st February 2018
Vijay Bhattiprolu, Mrinalkanti Ghosh, Venkatesan Guruswami, Euiwoong Lee, Madhur Tulsiani

Inapproximability of Matrix $p \rightarrow q$ Norms

We study the problem of computing the $p\rightarrow q$ norm of a matrix $A \in R^{m \times n}$, defined as \[ \|A\|_{p\rightarrow q} ~:=~ \max_{x \,\in\, R^n \setminus \{0\}} \frac{\|Ax\|_q}{\|x\|_p} \] This problem generalizes the spectral norm of a matrix ($p=q=2$) and the Grothendieck problem ($p=\infty$, $q=1$), and has been ... more >>>

TR19-141 | 22nd October 2019
Mark Braverman, Subhash Khot, Dor Minzer

On Rich $2$-to-$1$ Games

We propose a variant of the $2$-to-$1$ Games Conjecture that we call the Rich $2$-to-$1$ Games Conjecture and show that it is equivalent to the Unique Games Conjecture. We are motivated by two considerations. Firstly, in light of the recent proof of the $2$-to-$1$ Games Conjecture, we hope to understand ... more >>>

TR21-169 | 24th November 2021
Mitali Bafna, Max Hopkins, Tali Kaufman, Shachar Lovett

Hypercontractivity on High Dimensional Expanders: a Local-to-Global Approach for Higher Moments

Hypercontractivity is one of the most powerful tools in Boolean function analysis. Originally studied over the discrete hypercube, recent years have seen increasing interest in extensions to settings like the $p$-biased cube, slice, or Grassmannian, where variants of hypercontractivity have found a number of breakthrough applications including the resolution of ... more >>>

TR22-011 | 25th January 2022
Andrej Bogdanov, Miguel Cueto Noval, Charlotte Hoffmann, Alon Rosen

Public-Key Encryption from Continuous LWE

The continuous learning with errors (CLWE) problem was recently introduced by Bruna
et al. (STOC 2021). They showed that its hardness implies infeasibility of learning Gaussian
mixture models, while its tractability implies efficient Discrete Gaussian Sampling and thus
asymptotic improvements in worst-case lattice algorithms. No reduction between CLWE and
LWE ... more >>>

ISSN 1433-8092 | Imprint