Under the auspices of the Computational Complexity Foundation (CCF)

REPORTS > KEYWORD > SHIFTED PARTIALS:
Reports tagged with shifted partials:
TR15-181 | 13th November 2015
Neeraj Kayal, Chandan Saha, Sébastien Tavenas

On the size of homogeneous and of depth four formulas with low individual degree

Let $r \geq 1$ be an integer. Let us call a polynomial $f(x_1, x_2,\ldots, x_N) \in \mathbb{F}[\mathbf{x}]$ as a multi-$r$-ic polynomial if the degree of $f$ with respect to any variable is at most $r$ (this generalizes the notion of multilinear polynomials). We investigate arithmetic circuits in which the output ... more >>>

TR16-006 | 22nd January 2016
Neeraj Kayal, Chandan Saha, Sébastien Tavenas

An almost Cubic Lower Bound for Depth Three Arithmetic Circuits

Revisions: 2

We show an $\Omega \left(\frac{n^3}{(\ln n)^2}\right)$ lower bound on the size of any depth three ($\SPS$) arithmetic circuit computing an explicit multilinear polynomial in $n$ variables over any field. This improves upon the previously known quadratic lower bound by Shpilka and Wigderson.

more >>>

TR16-187 | 21st November 2016
morris yau

Almost Cubic Bound for Depth Three Circuits in VP

Revisions: 3

In "An Almost Cubic Lower Bound for $\sum\prod\sum$ circuits in VP", [BLS16] present an infinite family of polynomials, $\{P_n\}_{n \in \mathbb{Z}^+}$, with $P_n$
on $N = \Theta(n polylog(n))$
variables with degree $N$ being in VP such that every
$\sum\prod\sum$ circuit computing $P_n$ is of size $\Omega\big(\frac{N^3}{2^{\sqrt{\log N}}}\big)$.
We ... more >>>

TR22-151 | 12th November 2022
Prashanth Amireddy, Ankit Garg, Neeraj Kayal, Chandan Saha, Bhargav Thankey

Low-depth arithmetic circuit lower bounds via shifted partials

We prove super-polynomial lower bounds for low-depth arithmetic circuits using the shifted partials measure [Gupta-Kamath-Kayal-Saptharishi, CCC 2013], [Kayal, ECCC 2012] and the affine projections of partials measure [Garg-Kayal-Saha, FOCS 2020], [Kayal-Nair-Saha, STACS 2016]. The recent breakthrough work of Limaye, Srinivasan and Tavenas [FOCS 2021] proved these lower bounds by proving ... more >>>

ISSN 1433-8092 | Imprint