Pavel Hrubes

For a boolean function $f:\{0,1\}^n\rightarrow \{0,1\}$, let $\hat{f}$ be the unique multilinear polynomial such that $f(x)=\hat{f}(x)$ holds for every $x\in \{0,1\}^n$. We show that, assuming $\hbox{VP}\not=\hbox{VNP}$, there exists a polynomial-time computable $f$ such that $\hat{f}$ requires super-polynomial arithmetic circuits. In fact, this $f$ can be taken as a monotone 2-CNF, ... more >>>