Mladen Mikša, Jakob Nordström

We study the problem of obtaining lower bounds for polynomial calculus (PC) and polynomial calculus resolution (PCR) on proof degree, and hence by [Impagliazzo et al. '99] also on proof size. [Alekhnovich and Razborov '03] established that if the clause-variable incidence graph of a CNF formula F is a good ... more >>>

Per Austrin, Kilian Risse

We study the complexity of proving that a sparse random regular graph on an odd number of vertices does not have a perfect matching, and related problems involving each vertex being matched some pre-specified number of times. We show that this requires proofs of degree $\Omega(n/\log n)$ in the Polynomial ... more >>>

Sasank Mouli

For every $n >0$, we show the existence of a CNF tautology over $O(n^2)$ variables of width $O(\log n)$ such that it has a Polynomial Calculus Resolution refutation over $\{0,1\}$ variables of size $O(n^3polylog(n))$ but any Polynomial Calculus refutation over $\{+1,-1\}$ variables requires size $2^{\Omega(n)}$. This shows that Polynomial Calculus ... more >>>