Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with Imperfectly Shared Randomness:
TR15-087 | 30th May 2015
Badih Ghazi, Pritish Kamath, Madhu Sudan

Communication Complexity of Permutation-Invariant Functions

Motivated by the quest for a broader understanding of communication complexity of simple functions, we introduce the class of ''permutation-invariant'' functions. A partial function $f:\{0,1\}^n \times \{0,1\}^n\to \{0,1,?\}$ is permutation-invariant if for every bijection $\pi:\{1,\ldots,n\} \to \{1,\ldots,n\}$ and every $\mathbf{x}, \mathbf{y} \in \{0,1\}^n$, it is the case that $f(\mathbf{x}, \mathbf{y}) ... more >>>

TR17-081 | 2nd May 2017
Badih Ghazi, Madhu Sudan

The Power of Shared Randomness in Uncertain Communication

In a recent work (Ghazi et al., SODA 2016), the authors with Komargodski and Kothari initiated the study of communication with contextual uncertainty, a setup aiming to understand how efficient communication is possible when the communicating parties imperfectly share a huge context. In this setting, Alice is given a function ... more >>>

ISSN 1433-8092 | Imprint