Eshan Chattopadhyay, David Zuckerman

We explicitly construct an extractor for two independent sources on $n$ bits, each with min-entropy at least $\log^C n$ for a large enough constant $C$. Our extractor outputs one bit and has error $n^{-\Omega(1)}$. The best previous extractor, by Bourgain [B2], required each source to have min-entropy $.499n$.

A key ... more >>>

Raghu Meka

A Boolean function on n variables is q-resilient if for any subset of at most q variables, the function is very likely to be determined by a uniformly random assignment to the remaining n-q variables; in other words, no coalition of at most q variables has significant influence on the ... more >>>

Avraham Ben-Aroya, Gil Cohen, Dean Doron, Amnon Ta-Shma

In their seminal work, Chattopadhyay and Zuckerman (STOC'16) constructed a two-source extractor with error $\varepsilon$ for $n$-bit sources having min-entropy $poly\log(n/\varepsilon)$. Unfortunately, the construction running-time is $poly(n/\varepsilon)$, which means that with polynomial-time constructions, only polynomially-large errors are possible. Our main result is a $poly(n,\log(1/\varepsilon))$-time computable two-source condenser. For any $k ... more >>>

Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, Shachar Lovett, David Zuckerman

A major challenge in complexity theory is to explicitly construct functions that have small correlation with low-degree polynomials over $F_2$. We introduce a new technique to prove such correlation bounds with $F_2$ polynomials. Using this technique, we bound the correlation of an XOR of Majorities with constant degree polynomials. In ... more >>>