Does every Boolean tautology have a short propositional-calculus proof? Here, a propositional-calculus (i.e., Frege) proof is any proof starting from a set of axioms and deriving new Boolean formulas using a fixed set of sound derivation rules. Establishing any super-polynomial size lower bound on Frege proofs (in terms of the ... more >>>
An Algebraic Formula for a polynomial $P\in F[x_1,\ldots,x_N]$ is an algebraic expression for $P(x_1,\ldots,x_N)$ using variables, field constants, additions and multiplications. Such formulas capture an algebraic analog of the Boolean complexity class $\mathrm{NC}^1.$ Proving lower bounds against this model is thus an important problem.
It is known that, to prove ... more >>>