We introduce the Nondeterministic Strong Exponential Time Hypothesis
(NSETH) as a natural extension of the Strong Exponential Time
Hypothesis (SETH). We show that both refuting and proving
NSETH would have interesting consequences.
In particular we show that disproving NSETH would ...
more >>>
Under the Strong Exponential Time Hypothesis, an integer linear program with $n$ Boolean-valued variables and $m$ equations cannot be solved in $c^n$ time for any constant $c < 2$. If the domain of the variables is relaxed to $[0,1]$, the associated linear program can of course be solved in polynomial ... more >>>
We show that assuming the strong exponential-time hypothesis (SETH), there are no non-trivial algorithms for the nearest codeword problem (NCP), the minimum distance problem (MDP), or the nearest codeword problem with preprocessing (NCPP) on linear codes over any finite field. More precisely, we show that there are no NCP, MDP, ... more >>>
We show that for every $r \ge 2$ there exists $\epsilon_r > 0$ such that any $r$-uniform hypergraph on $m$ edges with bounded vertex degree has a set of at most $(\frac{1}{2} - \epsilon_r)m$ edges the removal of which breaks the hypergraph into connected components with at most $m/2$ edges. ... more >>>
We construct $k$-CNFs with $m$ variables on which the strong version of PPSZ $k$-SAT algorithm, which uses bounded width resolution, has success probability at most $2^{-(1 - (1 + \epsilon)2/k)m}$ for every $\epsilon > 0$. Previously such a bound was known only for the weak PPSZ algorithm which exhaustively searches ... more >>>