Let $G$ be an undirected, bounded degree graph with $n$ vertices. Fix a finite graph $H$, and suppose one must remove $\varepsilon n$ edges from $G$ to make it $H$-minor free (for some small constant $\varepsilon > 0$).
We give an $n^{1/2+o(1)}$-time randomized procedure that, with high probability, finds an ...
more >>>
Let $G$ be an undirected, bounded degree graph
with $n$ vertices. Fix a finite graph $H$, and suppose one must remove $\varepsilon n$ edges from $G$ to make it $H$-minor free (for some small constant $\varepsilon > 0$). We give an $n^{1/2+o(1)}$-time randomized procedure that, with high probability, finds an ...
more >>>
Let $G$ be a graph with $n$ vertices and maximum degree $d$. Fix some minor-closed property $\mathcal{P}$ (such as planarity).
We say that $G$ is $\varepsilon$-far from $\mathcal{P}$ if one has to remove $\varepsilon dn$ edges to make it have $\mathcal{P}$.
The problem of property testing $\mathcal{P}$ was introduced in ...
more >>>