Under the auspices of the Computational Complexity Foundation (CCF)

REPORTS > KEYWORD > MINOR-FREE GRAPHS:
Reports tagged with Minor-free graphs:
TR18-101 | 20th May 2018
Akash Kumar, C. Seshadhri, Andrew Stolman

#### Finding forbidden minors in sublinear time: a $O(n^{1/2+o(1)})$-query one-sided tester for minor closed properties on bounded degree graphs

Let $G$ be an undirected, bounded degree graph with $n$ vertices. Fix a finite graph $H$, and suppose one must remove $\varepsilon n$ edges from $G$ to make it $H$-minor free (for some small constant $\varepsilon > 0$).
We give an $n^{1/2+o(1)}$-time randomized procedure that, with high probability, finds an ... more >>>

TR18-148 | 25th August 2018
Akash Kumar, C. Seshadhri, Andrew Stolman

#### Finding forbidden minors in sublinear time: a $n^{1/2+o(1)}$-query one-sided tester for minor closed properties on bounded degree graphs

Let $G$ be an undirected, bounded degree graph
with $n$ vertices. Fix a finite graph $H$, and suppose one must remove $\varepsilon n$ edges from $G$ to make it $H$-minor free (for some small constant $\varepsilon > 0$). We give an $n^{1/2+o(1)}$-time randomized procedure that, with high probability, finds an ... more >>>

TR19-046 | 1st April 2019
Akash Kumar, C. Seshadhri, Andrew Stolman

#### andom walks and forbidden minors II: A $\poly(d\eps^{-1})$-query tester for minor-closed properties of bounded degree graphs

Revisions: 1

Let $G$ be a graph with $n$ vertices and maximum degree $d$. Fix some minor-closed property $\mathcal{P}$ (such as planarity).
We say that $G$ is $\varepsilon$-far from $\mathcal{P}$ if one has to remove $\varepsilon dn$ edges to make it have $\mathcal{P}$.
The problem of property testing $\mathcal{P}$ was introduced in ... more >>>

ISSN 1433-8092 | Imprint