The Kolmogorov complexity function of an infinite word $\xi$ maps a natural
number to the complexity $K(\xi|n)$ of the $n$-length prefix of $\xi$. We
investigate the maximally achievable complexity function if $\xi$ is taken
from a constructively describable set of infinite words. Here we are
interested ...
more >>>
In this paper we derive several results which generalise the constructive
dimension of (sets of) infinite strings to the case of exact dimension. We
start with proving a martingale characterisation of exact Hausdorff
dimension. Then using semi-computable super-martingales we introduce the
notion of exact constructive dimension ...
more >>>