Irit Dinur, Or Meir

One of the major challenges of the research in circuit complexity is proving super-polynomial lower bounds for de-Morgan formulas. Karchmer, Raz, and Wigderson suggested to approach this problem by proving that formula complexity behaves "as expected'' with respect to the composition of functions $f\circ g$. They showed that this conjecture, ... more >>>

Or Meir

The composition of two Boolean functions $f:\left\{0,1\right\}^{m}\to\left\{0,1\right\}$, $g:\left\{0,1\right\}^{n}\to\left\{0,1\right\}$

is the function $f \diamond g$ that takes as inputs $m$ strings $x_{1},\ldots,x_{m}\in\left\{0,1\right\}^{n}$

and computes

\[

(f \diamond g)(x_{1},\ldots,x_{m})=f\left(g(x_{1}),\ldots,g(x_{m})\right).

\]

This operation has been used several times for amplifying different

hardness measures of $f$ and $g$. This comes at a cost: the ...
more >>>

Or Meir, Avishay Tal

The direct-sum question is a classical question that asks whether

performing a task on $m$ independent inputs is $m$ times harder

than performing it on a single input. In order to study this question,

Beimel et. al (Computational Complexity 23(1), 2014) introduced the following related problems:

* The choice ... more >>>

Or Meir

One of the major open problems in complexity theory is proving super-logarithmic

lower bounds on the depth of circuits (i.e., $\mathbf{P}\not\subseteq\mathbf{NC}^1$). Karchmer, Raz, and Wigderson (Computational Complexity 5, 3/4) suggested to approach this problem by proving that depth complexity behaves "as expected" with respect to the composition of functions $f ...
more >>>