Kaave Hosseini, Shachar Lovett

Let $f:\{0,1\}^n \to \{0,1\}$ be a boolean function. Its associated XOR function is the two-party function $f_\oplus(x,y) = f(x \oplus y)$.

We show that, up to polynomial factors, the deterministic communication complexity of $f_{\oplus}$ is equal to the parity decision tree complexity of $f$.

This relies on a novel technique ...
more >>>

Anastasiya Chistopolskaya, Vladimir Podolskii

We prove a new lower bound on the parity decision tree complexity $D_{\oplus}(f)$ of a Boolean function $f$. Namely, granularity of the Boolean function $f$ is the smallest $k$ such that all Fourier coefficients of $f$ are integer multiples of $1/2^k$. We show that $D_{\oplus}(f)\geq k+1$.

This lower bound is ... more >>>

Uma Girish, Avishay Tal, Kewen Wu

We prove that for every parity decision tree of depth $d$ on $n$ variables, the sum of absolute values of Fourier coefficients at level $\ell$ is at most $d^{\ell/2} \cdot O(\ell \cdot \log(n))^\ell$.

Our result is nearly tight for small values of $\ell$ and extends a previous Fourier bound ...
more >>>

Arkadev Chattopadhyay, Nikhil Mande, Swagato Sanyal, Suhail Sherif

We show that the deterministic decision tree complexity of a (partial) function or relation $f$ lifts to the deterministic parity decision tree (PDT) size complexity of the composed function/relation $f \circ g$ as long as the gadget $g$ satisfies a property that we call stifling. We observe that several simple ... more >>>