We study *interactive oracle proofs* (IOPs) (Ben-Sasson, Chiesa, Spooner '16), which combine aspects of probabilistically checkable proofs (PCPs) and interactive proofs (IPs). We present IOP constructions and general techniques that enable us to obtain tradeoffs in proof length versus query complexity that are not known to be achievable via PCPs ... more >>>
The original proof of the PCP Theorem composes a Reed-Muller-based PCP with itself, and then composes the resulting PCP with a Hadamard-based PCP [Arora, Lund, Motwani, Sudan and Szegedy ({\em JACM}, 1998)].
Hence, that proof applies a (general) proof composition result twice.
(Dinur's alternative proof consists of logarithmically many gap ...
more >>>