A de Morgan formula over Boolean variables $x_1, \ldots, x_n$ is a binary tree whose internal nodes are marked with AND or OR gates and whose leaves are marked with variables or their negation. We define the size of the formula as the number of leaves in it. Proving that ... more >>>
Schur Polynomials are families of symmetric polynomials that have been
classically studied in Combinatorics and Algebra alike. They play a central
role in the study of Symmetric functions, in Representation theory [Sta99], in
Schubert calculus [LM10] as well as in Enumerative combinatorics [Gas96, Sta84,
Sta99]. In recent years, they have ...
more >>>
In this paper, we propose a new conjecture, the XOR-KRW conjecture, which is a relaxation of the Karchmer-Raz-Wigderson conjecture [KRW95]. This relaxation is still strong enough to imply $\mathbf{P} \not\subseteq \mathbf{NC}^1$ if proven. We also present a weaker version of this conjecture that might be used for breaking $n^3$ lower ... more >>>
In this paper, we prove a super-cubic lower bound on the size of a communication protocol for generalized Karchmer-Wigderson game for some explicit function $f: \{0,1\}^n\to \{0,1\}^{\log n}$. Lower bounds for original Karchmer-Wigderson games correspond to De Morgan formula lower bounds, thus the best known size lower bound is cubic. ... more >>>