Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > RANDOM MATRICES:
Reports tagged with random matrices:
TR16-058 | 12th April 2016
Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh Kothari, Ankur Moitra, Aaron Potechin

A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem

We prove that with high probability over the choice of a random graph $G$ from the Erd\H{o}s-R\'enyi distribution $G(n,1/2)$, the $n^{O(d)}$-time degree $d$ Sum-of-Squares semidefinite programming relaxation for the clique problem will give a value of at least $n^{1/2-c(d/\log n)^{1/2}}$ for some constant $c>0$.
This yields a nearly tight ... more >>>


TR20-156 | 22nd October 2020
Sankeerth Rao Karingula, Shachar Lovett

Codes over integers, and the singularity of random matrices with large entries

Revisions: 1

The prototypical construction of error correcting codes is based on linear codes over finite fields. In this work, we make first steps in the study of codes defined over integers. We focus on Maximum Distance Separable (MDS) codes, and show that MDS codes with linear rate and distance can be ... more >>>


TR22-101 | 15th July 2022
Omar Alrabiah, Venkatesan Guruswami, Pravesh Kothari, Peter Manohar

A Near-Cubic Lower Bound for 3-Query Locally Decodable Codes from Semirandom CSP Refutation

Revisions: 1

A code $C \colon \{0,1\}^k \to \{0,1\}^n$ is a $q$-locally decodable code ($q$-LDC) if one can recover any chosen bit $b_i$ of the message $b \in \{0,1\}^k$ with good confidence by randomly querying the encoding $x = C(b)$ on at most $q$ coordinates. Existing constructions of $2$-LDCs achieve $n = ... more >>>


TR23-162 | 1st November 2023
Pravesh Kothari, Peter Manohar

An Exponential Lower Bound for Linear 3-Query Locally Correctable Codes

We prove that the blocklength $n$ of a linear $3$-query locally correctable code (LCC) $\mathcal{L} \colon \mathbb{F}^k \to \mathbb{F}^n$ with distance $\delta$ must be at least $n \geq 2^{\Omega\left(\left(\frac{\delta^2 k}{(|\mathbb{F}|-1)^2}\right)^{1/8}\right)}$. In particular, the blocklength of a linear $3$-query LCC with constant distance over any small field grows exponentially with $k$. ... more >>>




ISSN 1433-8092 | Imprint