Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > TOTAL FUNCTIONS:
Reports tagged with total functions:
TR16-072 | 4th May 2016
Anurag Anshu, Aleksandrs Belovs, Shalev Ben-David, Mika G\"o{\"o}s, Rahul Jain, Robin Kothari, Troy Lee, Miklos Santha

Separations in communication complexity using cheat sheets and information complexity

While exponential separations are known between quantum and randomized communication complexity for partial functions, e.g. Raz [1999], the best known separation between these measures for a total function is quadratic, witnessed by the disjointness function. We give the first super-quadratic separation between quantum and randomized
communication complexity for a ... more >>>


TR20-066 | 28th April 2020
Scott Aaronson, Shalev Ben-David, Robin Kothari, Avishay Tal

Quantum Implications of Huang's Sensitivity Theorem

Based on the recent breakthrough of Huang (2019), we show that for any total Boolean function $f$, the deterministic query complexity, $D(f)$, is at most quartic in the quantum query complexity, $Q(f)$: $D(f) = O(Q(f)^4)$. This matches the known separation (up to log factors) due to Ambainis, Balodis, Belovs, Lee, ... more >>>


TR20-153 | 6th October 2020
Robert Kleinberg, Daniel Mitropolsky, Christos Papadimitriou

Total Functions in the Polynomial Hierarchy

We identify several genres of search problems beyond NP for which existence of solutions is guaranteed. One class that seems especially rich in such problems is PEPP (for "polynomial empty pigeonhole principle"), which includes problems related to existence theorems proved through the union bound, such as finding a bit string ... more >>>


TR22-025 | 15th February 2022
Oliver Korten

Efficient Low-Space Simulations From the Failure of the Weak Pigeonhole Principle

Revisions: 3

A recurring challenge in the theory of pseudorandomness and circuit complexity is the explicit construction of ``incompressible strings,'' i.e. finite objects which lack a specific type of structure or simplicity. In most cases, there is an associated NP search problem which we call the ``compression problem,'' where we are given ... more >>>




ISSN 1433-8092 | Imprint