Cryptography relies on the computational hardness of structured problems. While one-way functions, the most basic cryptographic object, do not seem to require much structure, as we advance up the ranks into public-key cryptography and beyond, we seem to require that certain structured problems are hard. For example, factoring, quadratic residuosity, ... more >>>
In this work, we show how to construct indistinguishability obfuscation from subexponential hardness of four well-founded assumptions. We prove:
Let $\tau \in (0,\infty), \delta \in (0,1), \epsilon \in (0,1)$ be arbitrary constants. Assume sub-exponential security of the following assumptions, where $\lambda$ is a security parameter, and the parameters $\ell,k,n$ below ... more >>>
We present an elementary, self-contained proof of the result of Goldwasser and Rothblum [GR07] that the existence of a (perfect) statistically secure obfuscator implies a collapse of the polynomial hierarchy. In fact, we show that an existence of a weaker object implies a somewhat stronger statement. In addition, we extend ... more >>>