Ilias Diakonikolas, Daniel Kane, Alistair Stewart

We prove the first {\em Statistical Query lower bounds} for two fundamental high-dimensional learning problems involving Gaussian distributions: (1) learning Gaussian mixture models (GMMs), and (2) robust (agnostic) learning of a single unknown mean Gaussian. In particular, we show a {\em super-polynomial gap} between the (information-theoretic) sample complexity and the ... more >>>

Joan Bruna, Oded Regev, Min Jae Song, Yi Tang

We introduce a continuous analogue of the Learning with Errors (LWE) problem, which we name CLWE. We give a polynomial-time quantum reduction from worst-case lattice problems to CLWE, showing that CLWE enjoys similar hardness guarantees to those of LWE. Alternatively, our result can also be seen as opening new avenues ... more >>>

Pritam Chandra, Ankit Garg, Neeraj Kayal, Kunal Mittal, Tanmay Sinha

We present a general framework for designing efficient algorithms for unsupervised learning problems, such as mixtures of Gaussians and subspace clustering. Our framework is based on a meta algorithm that learns arithmetic circuits in the presence of noise, using lower bounds. This builds upon the recent work of Garg, Kayal ... more >>>